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Preface

This book, entitled simply DSP First, is the second edition of the text DSP First: A
Multimedia Approach (1998) which was packaged with a CD-ROM that provided many
resources to extend the boundaries of a traditional textbook. In 2003, a second book
entitled Signal Processing First was produced with a broader set of topics that included
four new chapters on continuous-time signal processing and the Fourier transform, as well
as updated versions of the first eight chapters of DSP First. New material was produced
for the CD-ROM bundled with the 2003 textbook, and all the supporting resources have
now moved to a website for easier access.

These three books and the Companion Website are the result of more than 20 years
of work grounded on the premise that digital signal processing (DSP) is an ideal starting
point for the study of both electrical engineering and computer engineering. In the summer
of 1993, two of us (JHMc and RWS) began to develop a one-quarter course that was to
become the required introductory course for Georgia Tech computer engineering (CmpE)
students. We argued that the subject of digital signal processing had everything we
wanted in a first course for computer engineers: it introduced the students to the use
of mathematics as a language for thinking about and solving engineering problems; it
laid useful groundwork for subsequent courses; it made a strong connection to digital
computation as a means for implementing systems; and it provided the tools to discuss
interesting applications that would motivate beginning engineers to do the hard work of
connecting mathematics and computation to problem solving. Nothing has happened in
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the past 22 years to change our minds on this point. Indeed, our teaching experience
with more than 6,000 students at Georgia Tech has only strengthened our conviction that
digital signal processing, distilled to its essence, is an ideal introductory subject for both
electrical and computer engineering students.1 In fact, we have become firmly convinced
that a course on DSP at the level of this text should be required of every engineering and
computer science student.

From the beginning, we believed that “hands-on” experience with real signals
was crucial, so we expended considerable effort on developing additional material for
laboratory exercises and projects based on MATLAB. In the laboratory assignments,
students can experience the effects of signal processing operations that they have
implemented on sound and image signals. For example, they can synthesize music from
sinusoids, but they can also see that those same sinusoids are the basis for the wireless
systems that they use routinely to access the Internet. These experiences, available on the
Companion Website, will augment and reinforce the mathematical concepts that form the
basis of DSP.

In addition to the 25 detailed lab assignments, the Companion Website includes
many resources that extend the printed textbook with material such as demonstrations
and animations used in classes, and hundreds of solved homework problems. The impetus
for having this website came from MarkYoder who, in 1995, while on sabbatical leave at
Georgia Tech from Rose-Hulman, had the idea to put all of this material into a form that
other teachers (and students) could access easily. Interactive MATLAB demonstrations
have been created for demonstrating specific topics such as convolution and frequency
response, and most of these are now used as the basis for some of the laboratory exercises.
As teachers, all this material has changed the way we present ideas, because it expands
the ways to visualize a concept “beyond the equations.” Over the years, the collection
of resources on our website has continued to grow. In the future, we will explore new
ideas for presenting the concepts of DSP, and hope to move beyond the printed page to an
e-Text version that would truly integrate the narrative of the book with the visualizations
of the companion website.

The distinguishing feature of this text (and its progenitors) is that it presents signal
processing at a level consistent with an introductory ECE course, i.e., the sophomore
level (second year) in a typical U.S. university. The list of topics in the book is not
surprising given its emphasis on discrete-time signal processing, but since we want a
course that is broadly accessible to sophomores, we feel that we must combine signal
processing concepts with some introductory ideas. Part of the reason for this is that in
many electrical engineering curriculums, signals and systems and DSP typically have
been treated as junior- and senior-level courses, for which a traditional background of

1In our development of these ideas, two books by Professor Ken Steiglitz of Princeton University had a
major impact on our thinking: An Introduction to Discrete Systems, John Wiley & Sons, 1972, and A Digital
Signal Processing Primer: With Applications to Computer Music, Addison-Wesley Publishing Company,
1996. Steiglitz’s 1972 book was well ahead of its time, since DSP had few practical applications, and even
simple simulations on then-available batch processing computers required significant programming effort.
However, by 1993 when we began our work, easy-to-use software environments such as MATLAB were
widely available for implementing DSP computations on powerful personal computers.
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linear circuits and linear systems is assumed. Our approach, on the other hand, makes
the subject much more accessible to students in other majors such as computer science
and other engineering fields. This point is increasingly important because non-specialists
need to use DSP techniques routinely in many areas of science and technology.

Content of the New Edition. This new edition has an organization similar to the first
edition of DSP First. A look at the table of contents shows that the book begins very
simply (Chapter 2) with a detailed discussion of continuous-time sinusoidal signals and
their representation by complex exponentials. This is a topic traditionally introduced in
a linear circuits course, but including it here makes it immediately accessible for the rest
of this book, especially for students who come from other backgrounds. If students have
already studied linear circuits, this chapter can be skipped, or rapidly covered. We then
proceed to introduce the spectrum concept (Chapter 3) by considering sums of sinusoidal
signals, culminating with a brief introduction to Fourier series. Although Chapter 3 of
the first edition covered the same basic ideas, this chapter has some new material.2

Next we make the transition to discrete-time signals by considering sampled
sinusoidal signals (Chapter 4). We have found that it is not necessary to invoke the
continuous-time Fourier transform to make the important issues in sampling clear. All
that is needed is the simple trigonometric identity cos(θ + 2π) = cos(θ). In fact, in
Chapters 2–4 (with the exception of Fourier Series), we have only needed to rely on the
simple mathematics of sine and cosine functions. The basic linear system concepts are
then introduced with running average systems and other simple FIR filters (Chapter 5).
Impulse sequences are introduced which leads to the impulse response characterizing a
filter. Convolution is treated as a numerical operation in the first pass at this idea. The
key concept of frequency response is derived and interpreted for FIR filters (Chapter 6).
Sinusoids are the primary signals of interest, and we emphasize the magnitude and phase
change experienced by a sinusoid when filtered by a linear time-invariant system.

At this point we depart significantly from the first edition by introducing (Chapter 7)
the concept of discrete-time Fourier transform (DTFT), which arises naturally from the
frequency response of a discrete-time system. The concept of the inverse DTFT completes
the description of an invertible transform and also enables us to describe ideal filters. It
is then natural to move from the DTFT to the discrete Fourier transform (DFT), which
is simply a sampled version of the DTFT and thus computable through fast algorithms
that are readily available (Chapter 8). Chapters 7 and 8 are completely new. They are
a response to frequent requests from teachers who want to expose their students to the
powerful concept of the Fourier transform, and we have found that sophomores are fully
capable of understanding these concepts and putting them to use. These two chapters bring
many of the ideas of practical spectrum analysis into focus with the goal of providing the
knowledge to successfully employ the powerful spectrum analysis tools readily available
in software environments such as MATLAB.

2Furthermore, for instructors who prefer to dive deeper into Fourier analysis of periodic signals,Appendix
C on Fourier series is essentially another entire chapter on that topic.
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Finally, the last two chapters return to the flow of the first edition. We introduce
z-transforms (Chapter 9) and IIR systems (Chapter 10). At this stage, a student who
has faithfully read the text, worked homework problems, and done the laboratory
assignments will be rewarded with the ability to understand applications involving the
sampling theorem, discrete-time filtering, and spectrum analysis. Furthermore, they are
well prepared to move on to courses in linear analog circuits, continuous-time signals and
systems, and control systems. All of these courses can build on the foundation established
through the study of this text.

Summary of What’s New in This Edition

• New material on the Discrete-Time Fourier Transform (DTFT) has been developed
and is presented in Chapter 7. The presentation makes an easy transition from the
frequency response concept to begin the study of the general idea of a Fourier
transform.

• New material on ideal filters and digital filter design is presented in Chapter 7 as a
very useful application of the DTFT. The window method for FIR filter design is
presented in detail.

• New material on the Discrete Fourier Transform (DFT) has been developed and is
presented in Chapter 8. The presentation adopts the point of view that the DFT is
a sampled version of the DTFT, and also develops the relationship of the DFT to
the discrete Fourier series (DFS).

• New material on spectrum analysis and the spectrogram has been developed for
the last sections of Chapter 8. This provides a solid foundation for understanding
time-frequency analysis of signals as is commonly done with the FFT algorithm,
as well as the role of windowing in frequency resolution.

• Chapters 7 and 8 are derived from Chapter 9 in the first edition and Chapter 13
in Signal Processing First. The new chapters are a significant rewrite to make this
material accessible at the introductory level. The benefit is that students can learn
the ideas of practical spectrum analysis which can then be reinforced with a lab
experience where actual signals are processed with the tools available in MATLAB.

• The presentation of the spectrum in Chapter 3 has been expanded to include a formal
discussion of properties of the spectrum (e.g., time-delay, frequency shifting). This
sets the stage for later discussions of the DTFT and DFT.

• The material on Fourier Series which was part of Chapter 3 has been expanded, but
most of it is now placed in Appendix C. Chapter 3 contains a sufficient description
of the Fourier series to present the spectrum of one periodic signal, the full wave
rectified sine. Appendix C provides an in-depth presentation for instructors who
choose to emphasize the topic. Details of other periodic signals (square wave,
triangular wave, and half-wave rectified sine) are given along with a derivation



A01_MCCL9251_02_SE_FM — 2015/7/6 — 19:34 — PAGE xix — #19

of Parseval’s theorem and a heuristic discussion of convergence. Properties of the
Fourier Series are also developed.

• Extensive changes have been made to the end-of-chapter problems. There are a
total of 241 problems in the book: 83 are new, 86 are different from the first edition
by virtue of changing the details, and 72 are the same as in the first edition.

• The Companion Website contains new material for labs, MATLAB visualizations,
and solved homework problems. The Companion Website may be found at
http://www.pearsonhighered.com/engineering-resources/.

At Georgia Tech, our sophomore-level, 3 credit course covers most of the content of
Chapters 2–10 in a format involving two one-hour lectures, one 1.5 hour recitation, and
one 1.5 hour laboratory period per week. As mentioned previously, we place considerable
emphasis on the lab because we believe that it is essential for motivating our students
to learn the mathematics of signal processing, and because it introduces our students to
the use of powerful software in engineering analysis and design. At Rose-Hulman, we
use DSP First in a freshman-level, 10-week course that covers Chapters 1–6, 9, and 10.
The Rose format is 3 one-hour lectures per week and one three-hour lab. The students
use MATLAB throughout the course. The entire content of the present text was used by
RWS for a 10-week, four credit course at Stanford University. Since this course followed
quarter-long courses in continuous-time signals and systems and linear circuits, it was
possible to skip Chapters 2 and 3 and move immediately into a focus on discrete-time
signals and systems using the remaining chapters. One credit was devoted to a weekly
lab assignment which was done individually without a regularly scheduled laboratory
period.

These examples from our own teaching experience show that the text and its associated
supporting materials can be used in many different ways depending on instructor
preference and number of course hours. As can be seen from the previous discussion,
the second edition of DSP First is not a conventional signals and systems book. One
difference is the inclusion of a significant amount of material on sinusoids and complex
phasor representations. In a traditional electrical engineering curriculum, these basic
notions are covered under the umbrella of linear circuits taken before studying signals
and systems. Indeed, our choice of title for this book and the first edition is designed
to emphasize this departure from tradition. An important point is that teaching signal
processing first also opens up new approaches to teaching linear circuits, since there is
much to build upon that will allow redirected emphasis in the circuits course.

A second difference from conventional signals and systems texts is that DSP First
emphasizes topics that rely on “frequency domain” concepts. This means that, in
an electrical engineering curriculum, topics like Laplace transforms, state space, and
feedback control, would have to be covered in later courses such as linear circuits or an
upper-level course on control systems. Although our text has clearly been shaped by a
specific point of view, this does not mean that it and the associated website can be used in
only one way. Indeed, as our own experience shows, by appropriate selection of topics,

http://www.pearsonhighered.com/engineering-resources
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our text can be used for either a one-quarter or one-semester signals and systems course
that emphasizes communications and signal processing applications from the frequency
domain point of view. For most electrical engineering curricula, the control-oriented
topics would be covered in another course.

In other disciplines such as computer science and computer engineering, DSP First
emphasizes those topics that are most relevant to computing for signal analysis. This is
also likely to be true in other engineering fields where data acquisition and frequency
domain analysis play an important role in modern engineering analysis and design.

This text and its Companion Website represents an untold amount of work by the
three authors, numerous colleagues, and many students. Fortunately, we have been able
to motivate a number of extremely talented students to contribute MATLAB demos to this
project. There are so many that to name them all would be impractical. We simply thank
them all for their valuable contributions to our project. Greg Krudysz who authored
several of the demos has now taken over the primary role of developing new demos
and visualizations with GUIs and updating the existing ones. Since the beginning in
1993, many professors have participated in the sophomore course ECE-2025 (and now
ECE-2026) at Georgia Tech as lecturers and recitation instructors. Once again, naming
all the recitation instructors would be impractical, but their comments and feedback have
given life to the course as it evolved during the past 12 years. For example, Pamela
Bhatti developed a laboratory on simulating the filter bank of a Cochlear Implant hearing
system. Recently, the lecturing and administration of the course has been shared by
Russ Mersereau, Fred Juang, Chin Lee, Elliot Moore, Mark Clements, Chris Rozell,
G. K. Chang, David Taylor, David Anderson, John Barry, Doug Williams, and Aaron
Lanterman. We are indebted to them for their many suggestions that have made a positive
impact on this second edition, especially the new material on the DFT and DTFT. We
are also indebted to Wayne Padgett and Bruce Black, who have taught ECE-380 at
Rose-Hulman and have contributed many good ideas, and we appreciate the work of
Ed Doering who created a whole new set of labs for ECE-180, the new freshman-level
DSP First. These labs start with traditional audio processing and end with video object
tracking. A new first for freshman.

We also want to acknowledge the contributions of Tom Robbins (formerly at Pearson
Prentice-Hall) who was an early supporter of our efforts to bring DSP to the fore in
ECE education. Tom bought into our concept of DSP First from the beginning, and he
encouraged us during the initial project, as well as the 2003 book. More recently, Andrew
Gilfillan and Julie Bai have been the editors who helped make this second edition a reality.

Finally, we want to recognize the understanding and support of our wives (Carolyn
McClellan, Dorothy Schafer, and Sarah Yoder). Carolyn’s photo of the cat Kilby appears
in Chapter 1. They have patiently supported us as this multi-year project continued to
consume energy and time that might have been spent with them.

JHMc
RWS
MAY
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1

Introduction

This is a book about signals and systems. In this age of multimedia gaming computers,
audio and video entertainment systems, and smartphones, it is almost certain that you,
the reader of this text, have formed some impression of the meaning of the terms signal
and system, and you probably use the terms often in daily conversation.

It is likely that your usage and understanding of the terms are correct within some
rather broad definitions. For example, you may think of a signal as “something” that
carries information. Usually, that something is a pattern of variations of a physical quantity
that can be manipulated, stored, or transmitted by physical processes. Examples include
speech signals, audio signals, video or image signals, biomedical signals, radar signals,
and seismic signals, to name just a few. An important point is that signals can take many
equivalent forms or representations. For example, a speech signal is produced as an
acoustic signal, but it can be converted to an electrical signal by a microphone, and then
to a string of numbers as in digital audio recording.

The term system may be somewhat more ambiguous and subject to interpretation.
For example, we often use “system” to refer to a large organization that administers
or implements some process, such as the “Social Security system” or the “airline
transportation system.” However, we are interested in a much narrower definition that is
very closely linked to signals. More specifically, a system, for our purposes, is something
that can manipulate, change, record, or transmit signals. For example, a DVD recording
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stores or represents a movie or a music signal as a sequence of numbers. A DVD player is
a system for converting the numbers stored on the disc (i.e., the numerical representation
of the signal) to a video and/or acoustic signal. In general, systems operate on signals to
produce new signals or new signal representations.

Our goal in this text is to develop a framework wherein it is possible to make
precise statements about both signals and systems. Specifically, we want to show that
mathematics is an appropriate language for describing and understanding signals and
systems. We also want to show that the representation of signals and systems by
mathematical equations allows us to understand how signals and systems interact and
how we can design and implement systems that achieve a prescribed purpose.

1-1 Mathematical Representation of Signals

Signals are patterns of variations that represent or encode information. Many signals
are naturally thought of as a pattern of variations in time. A familiar example is a speech
signal, which initially arises as a pattern of changing air pressure in the vocal tract.
This pattern, of course, evolves with time, creating what we often call a time waveform.
Figure 1-1 shows a plot of a recorded speech waveform. In this plot, the vertical axis
represents microphone voltage (proportional to air pressure), and the horizontal axis
represents time. Notice that there are four plots in the figure corresponding to four
contiguous time segments of the speech waveform. The second plot is a continuation of the
first, and so on, with each graph corresponding to a time interval of 50 milliseconds (ms).
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Figure 1-1 Strip plot of a speech signal
where each row is a continuation of the row
above. This signal s(t) can be represented as
a function of a single (time) variable. The
shaded region is shown in more detail in
Fig. 1-2.
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The speech signal in Fig. 1-1 is an example of a one-dimensional continuous-
time signal. Such signals can be represented mathematically as a function of a single
independent variable, which is normally called time and denoted t . Although in this
particular case we cannot write a simple equation that describes the graph of Fig. 1-1 in
terms of familiar mathematical functions, we can nevertheless associate a function s(t)
with the graph. Indeed, the graph itself can be taken as a definition of the function that
assigns a number s(t) to each instant of time (each value of t).

Many, if not most, signals originate as continuous-time signals. However, for reasons
that will become increasingly obvious as we progress through this text, it is often desirable
to obtain a discrete-time representation of a signal. This can be done by sampling a
continuous-time signal at isolated, equally spaced points in time. The result is a sequence
of numbers that can be represented as a function of an index variable that takes on only
integer values. This can be represented mathematically as s[n] = s(nTs), where n is an
integer (i.e., {. . . ,−2,−1, 0, 1, 2, . . . }), and Ts is the sampling period. Note that our
convention is to use parentheses ( ) to enclose the independent variable of a continuous-
variable function such as s(t), and square brackets [ ] to enclose the independent variable
of a discrete-variable function, e.g., the sequence s[n]. Sampling is, of course, exactly
what we do when we plot values of a function on graph paper or on a computer screen.
We cannot evaluate the function at every possible value of a continuous variable, but
only at a set of discrete points. Intuitively, we know that the closer the spacing in time
of the points, the more the sequence retains the shape of the original continuous-variable
function. Figure 1-2 shows an example of a short segment of a discrete-time signal that
was derived by sampling the speech waveform of Fig. 1-1 with a sampling period of
Ts = 1/8 ms. In this case, the dots show the sample values for the sequence s[n].

While many signals can be thought of as evolving patterns in time, many other signals
are not time-varying patterns. For example, an image formed by focusing light through a
lens is a spatial pattern, and thus is appropriately represented mathematically as a function
of two spatial variables. Such a signal would be considered, in general, as a function of
two independent variables [i.e., a picture might be denoted p(x, y)]. A photograph is
another example, such as the gray-scale image shown in Fig. 1-3. In this case, the value
p(x0, y0) represents the shade of gray at position (x0, y0) in the image.

Images such as that in Fig. 1-3 are generally considered to be two-dimensional
continuous-variable signals, since we normally consider space to be a continuum.

0 20 40 60 80 100 120 140 160 180 200

0

1
Samples of a Speech Waveform: sŒn� D s.nTs/

Sample Index .n/

�1

Figure 1-2 Discrete-time signal represented as
a one-dimensional sequence which is a
function of a discrete variable n. Signal
samples are taken from the shaded region of
Fig. 1-1. The continuous-time speech signal
s(t) is shown in gray.
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Figure 1-3 Example of a signal that can be
represented by a function of two spatial variables.

However, sampling can likewise be used to obtain a discrete-variable two-dimensional
signal from a continuous-variable two-dimensional signal. In a digital camera, this
sampling is done by recording light values which have been focused on a sensor array
composed of millions of points, or mega-pixels. In a color camera, there would be three
separate arrays for RGB: red, green, and blue. A two-dimensional gray-scale image like
Fig. 1-3 would be represented by a two-dimensional discrete-variable sequence or an
array of numbers, and would be denoted p[m, n] = p(m�x, n�y), where both m and n
would take on only integer values, and�x and�y are the horizontal and vertical sampling
periods, respectively.

Two-dimensional functions are appropriate mathematical representations of still
images that do not change with time; on the other hand, videos are time-varying images
that would require a third independent variable for time, so a video signal would be
denoted v(x, y, t). In analog television, time is discrete (30 frames/s), each horizontal
line (x) is continuous, but there are a finite number of horizontal lines, so y is discrete.
In present day digital video, all three variables of the video signal v(x, y, t) are discrete
since the signal is a sequence of discrete images.

Our purpose in this section has been to introduce the idea that signals can be
represented by mathematical functions. Although we will soon see that many familiar
functions are quite valuable in the study of signals and systems, we have not even
attempted to demonstrate that fact. Our sole concern is to make the connection between
functions and signals, and, at this point, functions simply serve as abstract symbols for
signals. Thus, for example, now we can refer to “the speech signal s(t)” or “the sampled
image p[m, n].” Although this may not seem highly significant, we will see in the next
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section that it is indeed a very important step toward our goal of using mathematics to
describe signals and systems in a systematic way.

1-2 Mathematical Representation of Systems

As we have already suggested, a system is something that transforms signals into new
signals or different signal representations. This is a rather vague definition, but it is useful
as a starting point. To be more specific, we say that a one-dimensional continuous-time
system takes an input signal x(t) and produces a corresponding output signal y(t). This
can be represented mathematically by

y(t) = T {x(t)} (1.1)

which means that the input signal (waveform, image, etc.) is operated on by the system
(symbolized by the operator T ) to produce the outputy(t).While this sounds very abstract
at first, a simple example shows that this need not be mysterious. Consider a system such
that the output signal is the square of the input signal. The mathematical description of
this system is simply

y(t) = [x(t)]2 (1.2)

which says that at each time instant the value of the output is equal to the square of the
input signal value at that same time. Such a system would logically be termed a “squarer
system.” Figure 1-4 shows the output signal of the squarer for the input of Fig. 1-1. As
would be expected from the properties of the squaring operation, we see that the output
signal is always nonnegative and the larger signal values are emphasized relative to the
smaller signal values.

The squarer system defined by (1.2) is a simple example of a continuous-time system
(i.e., a system whose input and output are continuous-time signals). Can we build a
physical system that acts like the squarer system? The answer is yes; the system of (1.2)
can be approximated through appropriate connections of electronic circuits. On the other
hand, if the input and output of the system are both discrete-time signals (sequences of
numbers) related by

y[n] = (x[n])2 (1.3)

then the system would be a discrete-time system. The implementation of the discrete-
time squarer system would be trivial given a digital computer; one simply multiplies each
discrete signal value by itself.

In thinking and writing about systems, it is often useful to have a visual representation
of the system. For this purpose, engineers use block diagrams to represent operations
performed in an implementation of a system and to show the interrelations among the
many signals that may exist in an implementation of a complex system. An example of
the general form of a block diagram is shown in Fig. 1-5. What this diagram shows is
simply that the signal y(t) is obtained from the signal x(t) by the operation T { }.
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Figure 1-4 Output of a squarer system for
the speech signal input of Fig. 1-1. The
squarer system is defined by the equation
y(t) = [x(t)]2.

A specific example of a system was suggested earlier when we discussed the sampling
relationship between continuous-time signals and discrete-time signals. A sampler is
defined as a system whose input is a continuous-time signal x(t) and whose output is the
corresponding sequence of samples, defined by the equation

x[n] = x(nTs) (1.4)

which simply states that the sampler “takes an instantaneous snapshot” of the continuous-
time input signal once every Ts s.1 Thus, the operation of sampling fits our definition of
a system, and it can be represented by the block diagram in Fig. 1-6. Often we will refer
to the sampler system as an “ideal continuous-to-discrete converter” or ideal C-to-D
converter. In this case, as in the case of the squarer, the name that we give to the system
is really just a description of what the system does.

T f � g

x.t/ y.t/ D T fx.t/g

Figure 1-5 Block diagram representation
of a continuous-time system.

Ideal
C-to-D

Converter

x.t/ xŒn� D x.nTs/

Ts

Figure 1-6 Block diagram representation of a
sampler.

1The units of time in seconds are abbreviated as s.
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1-3 Systems as Building Blocks

Block diagrams are useful for representing complex systems in terms of simpler systems,
which are more easily understood. For example, Fig. 1-7 shows a block diagram
representation of the process of recording and playback of music using MP3 compression.
This block diagram breaks the operation down into four subsystems, each of which could
be broken down further into smaller subsystems. The first operation is A-to-D (analog-
to-digital) conversion to acquire the music waveform in digital form. The A-to-D system
is a physical approximation to the ideal C-to-D converter defined in (1.4). An A-to-D
converter produces finite-precision numbers as samples of the input signal (quantized to
a limited number of bits), while the ideal C-to-D converter produces samples with infinite
precision. For the high-accuracy A-to-D converters used in precision audio systems, the
difference between an A-to-D converter and our idealized C-to-D converter is slight, but
the distinction is very important—only finite-precision quantized sample values can be
stored in digital memory of finite size.

Figure 1-7 shows that the output of the A-to-D converter is the input to a system that
compresses the numbers x[n] into a much smaller bit stream using the MP3 method. This
is a complex process, but for our purposes it is sufficient to show it as a single operation.
The output is a compressed digital representation that may be efficiently stored as data
on a server or transmitted to a user. Once another user has the compressed data file,
the MP3 compression must be reversed in order to listen to the audio signal. Since
MP3 is a “lossy” compression scheme, the signal synthesized by the MP3 decoder is
only an approximation to the original. The value of MP3 is that this approximation is
audibly indistinguishable from the original because the MP3 encoding method exploits
aspects of human hearing that render certain coding errors inaudible. Once the music
waveform is reconstituted in digital form as x̂[n], the last block does the conversion of the
signal from discrete-time form to continuous-time (acoustic) form using a system called a
D-to-A (digital-to-analog) converter. This system takes finite-precision binary numbers
in sequence and fills in a continuous-time function between the samples. The resulting
continuous-time electrical signal could then be fed to other systems, such as amplifiers,
loudspeakers, and headphones, for conversion to sound. In Chapter 4, we will discuss the
ideal D-to-C converter, which is an idealization of the physical device called an D-to-A
converter.

Systems like MP3 audio are all around us. For example, digital cameras use JPEG
encoding to reduce digital image file sizes prior to storage, and JPEG decoding to view
pictures. Most of the time we do not need to think about how such systems work, but this
example illustrates the value of thinking about a complex system in a hierarchical form.

A-to-D
Converter

MP3
Audio

Encoder

MP3
Audio

Decoder

D-to-A
Converter

Compressed
Audio Filex.t/ xŒn� Ox.t/OxŒn�

Figure 1-7 Simplified block diagram for MP3 audio compression and playback system.
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In this way, we can first understand the individual parts, then the relationship among the
parts, and finally the whole system. By looking at the MP3 audio system in this manner,
we can discuss two things. First of all, the conversion from continuous-time to discrete-
time and back to continuous-time can be considered separately from the other parts of
the system. The effect of connecting these blocks to the system is then relatively easy
to understand because they provide the input and output interface to real audio signals.
Secondly, details of some parts can be hidden and left to experts who, for example, can
develop more detailed breakdowns of the MP3 encoder and decoder subsystems. In fact,
those systems involve many signal processing operations, and it is possible to specify
their operations by connecting several canonical DSP blocks that we will study in this
text.

1-4 The Next Step

The MP3 audio coding system is a good example of a relatively complicated discrete-
time system. Buried inside the blocks of Fig. 1-7 are many discrete-time subsystems
and signals. While we do not promise to explain all the details of MP3 coders or any
other complex system, we do hope to establish the foundations for the understanding of
discrete- and continuous-time signals and systems so that this knowledge can be applied
to understanding components of more complicated systems. In Chapter 2, we will start
at a basic mathematical level and show how the well-known sine and cosine functions
from trigonometry play a fundamental role in signal and system theory. Next, we show
how complex numbers can simplify the algebra of trigonometric functions. Subsequent
chapters introduce the concept of the frequency spectrum of a signal and the concept of
filtering with a linear time-invariant system. By the end of the book, if you have diligently
worked the problems, experienced the demonstrations, and done the laboratory exercises
on the Companion Website (which are marked with icons), you will be rewarded with
a solid understanding of many of the key concepts underlying much of modern signal
processing technology.

NOTE
Companion Website
has many labs,
demonstrations and
homework problems
with solutions
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Sinusoids

We begin our discussion by introducing a general class of signals that are commonly
called cosine signals or, equivalently, sine signals, which are also commonly referred to
as cosine or sine waves, particularly when speaking about acoustic or electrical signals.
Collectively, such signals are called sinusoidal signals or, more concisely, sinusoids.
Sinusoidal signals are the basic building blocks in the theory of signals and systems, and
it is important to become familiar with their properties. The most general mathematical
formula for a sinusoid is

x(t) = A cos(ω0t + ϕ) (2.1)

where cos(·) denotes the cosine function that is familiar from the study of trigonometry.
When defining a continuous-time signal, we typically use a function whose independent
variable is t , a continuous real variable that represents time. From (2.1) it follows that
x(t) is a mathematical function in which the angle (or argument) of the cosine function
is, in turn, a function of the variable t . Since we normally think of time as increasing
uniformly, the angle of the cosine function likewise increases in proportion to time. The
parameters A, ω0, and ϕ are fixed numbers for a particular cosine signal. Specifically,
A is called the amplitude, ω0 the radian frequency, and ϕ the phase of the cosine
signal.




